Worst Case Circuit Analysis (WCCA) White Paper

Worst case circuit analysis (WCCA) is a technique which, by accounting for component variability, determines circuit performance under a worst case scenario, i.e., under extreme environmental or operating conditions. Environmental conditions are defined as external stresses applied to each circuit component, and can include temperature, humidity or radiation. Operating conditions include external electrical inputs, but must also consider factors such as component quality level, interaction between parts, and drift due to component aging. The output of a WCCA allows an assessment of actual applied part stresses against rated part parameters. This can help ensure sufficient part stress derating to meet design requirements. WCCA should be considered for all circuitry that is safety and/or financially critical.

Performance of a WCCA, and implementation of its results, can help identify design problems and alternatives that can reduce financial, legal and safety risks to the manufacturer, and help ensure satisfactory performance for the customer under virtually all operating conditions. The advantages and disadvantages of the three major WCCA methods are presented in Table 1. A capacitor example is shown in Table 2. The WCCA process is outlined in Table 3.

One of the most critical steps involved in completing a meaningful WCCA is the development of a part characteristic database. This database contains a composite of information necessary for quantifying sources of component parameter variation. Once these sources have been identified, the database can be used to calculate worst case component drift for critical parameters. Quantifying the contribution of environmental effects on component variability (as will be illustrated in an example) is also a critical step in the development of a WCCA. A number of starting places can be used to establish random and biased contributions to variability. They maybe summarized as:

- Company data (historical test data from other products, or special test programs)
- Vendor data (documentation of test conditions, sample size, number of lots, etc., is needed)
- Military specifications (tend to be very conservative)
- Outside sources (e.g., Jet Propulsion Lab for radiation data)

Actual field performance indicates that components tend to drift beyond initial tolerance levels. The magnitude of component tolerance variation is dependent on a variety of sources, as illustrated in Table 4. When conducting a worst case circuit performance analysis, the key elements to be examined within the system are dependent upon the intended function of the circuit. Critical timing of digital circuits, transfer functions of filtering networks, and characteristics of amplifiers are examples of circuit performance elements. Table 5 describes those parameters which should be analyzed in a worst case performance analysis for digital and analog circuits.

Methodology

Part statistics are based on two types of component variation: random and bias. Random variation is not predictable in direction. Bias, however, is predictable given known inputs. All sources of component variation can be grouped into one of these effects. The effects are subsequently combined to give an overall indication of part variability. Addition of individual random and biased variables is as follows:

- Bias Effects Added Algebraically
- Random Effects Root Sum Squared ($\pm 3\sigma$ limits of a normally distributed population)

Determination of the minimum and maximum limits of component value due to drift is as follows:

Worst Case Minimum = Nominal Value - (Nominal Value $\times \Sigma$ | Negative Biases |)

- (Nominal Value x $\sqrt{\Sigma}$ (Random Effects)²)

Worst Case Maximum =

Nominal Value + (Nominal Value x Σ | Positive Biases |)

+ (Nominal Value x $\sqrt{\Sigma}$ (Random Effects)²)

Method	Advantages	Disadvantages
Extreme Value Analysis (EVA)	 Most readily obtainable estimate of worst case performance (best initial WCCA approach) Does not require statistical inputs for circuit parameters (easiest to apply) Database need only supply part parameter variation extremes (easiest to apply) If circuit passes EVA, it will always function properly (high confidence for critical production applications) 	 Pessimistic estimate of circuit worst case performance If circuit fails, there is insufficient data to assess risk (modify circuit to meet EVA requirements, or apply RSS or MCA for less conservatism)
Root-Sum- Squared (RSS)	 More realistic estimate of worst case performance than EVA Knowledge of part parameter probability density function (pdf) is not required Provides a limited degree of risk assessment (% of units to pass or fail) 	 Standard deviation (σ) of piece part parameter probability distribution is required Assumes circuit sensitivities remain constant over range of parameter variability Assumes circuit performance variability follows a normal distribution
Monte Carlo Analysis (MCA)	 Provides the most realistic estimate of true worst case performance Provides additional information in support of circuit/product risk assessment 	 Requires use of computer Consumes a large amount of CPU time Requires knowledge of part parameter pdf

Table 1. WCCA Analysis Methods

Calculation of Capacitor Minimum and Maximum Values

The following example illustrates a representative calculation for determining the worst case minimum and maximum values for a 1200 μ F CLR capacitor. These parameters are used to determine the potential resultant effect of CLR capacitor drift on circuit applications.

Table 2. Capacitor Example				
	Bias (%)			
Parameters: Capacitance	Neg.	Pos.	Random (%)	
Initial Tolerance at 25°C			20	
Low Temp. (-20°C)	28			
High Temp. (+80°C)		17		
Other-Envt's (Hard Vacuum)	20			
Radiation (10KR, 10^{13} N/cm ²)		12		
Aging			10	
TOTAL VARIATION	48	29	$\sqrt{(20)^2 + (10)^2} = 22.4$	

	Table 2.	Capacitor	Example
--	----------	-----------	---------

where:

Worst Case Minimum = - 48 - 22.4 = -70.4% Worst Case Maximum = +29 + 22.4 = +51.4%Worst Case Minimum Capacitance = $1200\mu f - 1200\mu f (| -.48 | + .224) = 355.2\mu f$ Worst Case Maximum Capacitance = $1200\mu f + 1200\mu f (|+.29|+.224) = 1816.8\mu f$

Table 5. Worst Case Circuit Analysis Process	Table 3.	Worst Case	Circuit Analy	ysis Process
--	----------	------------	----------------------	--------------

Action	Rationale
Determine Analysis Approach	 Full analysis vs. circuit partitioning to critical functions Define the circuitry to be analyzed (analog, digital, etc.) Determine availability of component data Identify the tools available to support the analysis
 Obtain the Data Performance Requirements and Specifications Schematics and Block Diagrams Interconnection Lists and Wiring Diagrams Full Parts Lists Theory of Operation Product Operational Environments Product Operational Configurations Thermal Design Analysis 	 Analyst must be knowledgeable of the circuit and parameters being examined, including timing diagrams where appropriate

Action	Pationale
Dian the Analysis	Eurotional breakdown should include black diagrams that outline
• Develop a Eurotional	• Functional Diedkuown Should Include Diock diagrams that outline
Broakdown and Theory of	Block diagrams should dotail all functional interactions (inputs and
Operation	
Establish the Analysis	 Primary considerations include analysis of worst case circuit
• Establish the Analysis	performance and analysis of proper part application (i.e., derating)
Эсоре	 Secondary considerations may include circuit shielding noise. EMI
	around loops and temperature control
Develop a Part Parameter	 Critical part parameters include environmental (ambient and self-
Database (See Table 2–4	heating temperature vibration humidity radiation) and
and 5)	component aging characteristics
Identify Method of	Extreme Value Analysis (EVA) is easiest to apply Analysis of a
Analysis (See Table 1)	given circuit/product under simultaneous worst case parts limits
	Results are conservative
	Root-Sum-Squared (RSS) is a statistical approach. Results are
	more realistic than EVA, but methodology is more labor intensive.
	Monte Carlo Analysis (MCA) randomly selects part parameters and
	analyzes resulting system performance. Many simulations
	(typically 1,000 to 50,000 runs) must be made. Piece-part
	parameter statistical distributions must be known (or assumed
	normal).
Perform the Analysis	Identifies components that are overstressed under worst case
Worst Case Stress	conditions (or exceed product derating guidelines)
Analysis	
Worst Case Performance	 Analyze circuit to determine if performance under worst case
Analysis	conditions is achieved (simultaneous change of environmental
	conditions and part parameters to their worst realizable extremes)
	 For circuit partitioning, minimize the active components to as few
	logical blocks as possible
	• Include circuit and timing diagrams, as appropriate, in the analysis
	 Compare WCCA results with the specifications, documenting all
	inconsistencies
Document the Results	 Analysis results should be verifiable (document or reference all
	information used to develop the analysis - circuit equations, part
	data sources, and circuit simulation tools used)
	 If problems are found during the analysis, develop and propose
	potential fixes and alternative solutions

Table 3. Worst Case Circuit Analysis Process (Cont'd)

Table 4. Effecto			aram	eters vs. Source of Variation	
_		Environmenta	al		
Comp	onent Type	Source of Variat	tion	Parameter Effected	
Transisto	iela Effect	Temperature		^H FE (Blas) , ^V BE (Blas)	
Transistor	5			I _{CBO} (Bias)	
				RDS _{ON} (Bias) , V _{TH} (Bias)	
		Radiation		H _{FE} (Bias) , I _{CBO} (Bias)	
				V _{CE} (Saturation) (Random & Bias)	
				V _{TU} (Bias)	
Rectifiers	/Switching	Temperature		V_{r} (Bias), T_{c} (Bias), I_{b} (Bias)	
Diodes	,			1 F (0.00) / . S (0.00) / .R (0.00)	
		Radiation		I _R (Bias) , V _F (Bias)	
Zener Diodes		Temperature		V _Z (Bias) , (Sometimes Random)	
				Z _Z (Bias)	
Resistors		Temperature		Resistance (Bias & Random, Random)	
		Humidity		Resistance (Bias) Carbon Composition	
		Aging (Powered)		Resistance (Bias & Random)	
		Vacuum		Resistance (Bias)	
		Mechanical		Resistance (Bias & Random)	
Capacitor	s	Temperature		Capacitance (Bias and/or Random)	
				ESR (Bias), DF (Bias, Non Linear)	
		Aging		ESR (Bias), Capacitance (Bias and/or Random)	
		Flectrical		Voltage Coefficient	
		Vacuum		Capacitance (Bias, Non Hermetic)	
		Humidity		Capacitance (Bias)	
Linear ICs		Radiation		Voltage, current offset (Random), A _{OL} (Bias)	
		Temperature		Voltage, current offset (Bias & Random), Random	
				A _{OL} (Bias)	
Digital ICs		Temperature		Propagation Delay (Bias)	
		Rise/Fall Lime Bronzgation Dola			
		 Propagation Dela Radiation 	ıy		
Magnetics (strongly		Temperature		Saturation flux density (Bias)	
dependent on				Permeability (Bias)	
materials)				Core Loss (Bias, Nonlinear, Nonmonotonic)	
		Aging		Saturation flux density (Blas, very small)	
		Mechanical		Saturation flux density (Bias)	
Relays		Temperature		Pull in/Drop out current/volts (Bias)	
		-		Contact resistance (Bias, Secondary effect)	
				Mechanical Contact Resistance (Bias)	
HFE	gain		۷F	torward voltage ESK equivalent series resistance	
^I сво	collector-base	output current	т _s	storage time DF dissipation factor	
RDSON	on-drain source	e resistance	I _R	reverse current A _{OL} open loop gain	
V _{TH}	V_{TH} threshold voltage V_7		V_7	zener voltage	
V _{CE}	collector-emitter voltage Z _z		Ζ _z	zener impedance	

Digital Circuit Parameters				
Circuit Logic Pulse Widths	Compatibility			
Circuit Timing Current Dray	N			
Analog Circuit Parameters				
 Comparator Threshold Precision Switching Speed/Time Constant Offset Stability 	 Oscillator Frequency, Accuracy, Stability Output Power Level Stability Output Impedance Phase Stability Noise & Spurious Output 			
 Filter Insertion Loss Frequency Response Input/Output Impedance VSWR Spurious or Out-of-Band Feedthrough 	 Detector Bias Voltage Frequency Range VSWR Input Impedance Input 			
 Modulator Frequency Response Input/Output Impedance Insertion Loss Deviation VSWR 	 RF Switch (Solid State/Mechanical) Drive Requirements - Insertion Loss Power Dissipation - Frequency Response Power Handling - Video Feedthrough Switching Speed - Switch Duty Cycles Input/Output Impedance - VSWR 			
 Multiplier Output Power Frequency Response Input/Output Impedance 	 Coupler, Circulator Insertion Loss Frequency Response Power Handling Input/Output Impedance 			
 Mixer (Converter) Noise Figure Frequency Power Dissipation Output Spectrum Conversion Loss Intercept Points Driver Require- Compression Points Terminating Impedance 	 Stripline, Waveguide, Cavity Mode Suppression - Insertion Loss Adjustment Range, Resolution Dimensional Stability - VSWR Input/Output Impedance Material Stability 			

Table 5. Circuit Parameters for WCCA

Copyright © 2020 DIABLO MOUNTAIN REAASEARCH, LLC. All rights reserved.

Source:

• RAC Publication, CPE, *Reliability Toolkit: Commercial Practices Edition*.

For More Information:

• RAC Publication, CRTAWCCA, *Worst Case Circuit Analysis Application Guidelines*.